Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dmitry V. Albov,* Victor B. Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
lbov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.107$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Chlorophenyl)-5-methyl-7,8,9,10-tetrahydro-6H-cyclohepta[e][1,3]-oxazolo[3,2-a]pyridin-11-ium perchlorate

The title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClNO}^{+} . \mathrm{ClO}_{4}^{-}$, was synthesized and characterized by ${ }^{1} \mathrm{H}$ NMR and X-ray diffraction techniques.

Comment

In the course of systematic investigations of the effect of the size of cycloalkane fragments on the reactivity of the corresponding heterocycles based on pyridine, we have previously described the crystal structure of 1-(4-chlorophenacyl)-4-methyl-1,5,6,7,8,9-hexahydro- 2 H -cyclohepta $[b]$ pyridin- 2 -one, (1) (Albov et al., 2004a). Following a corresponding study with cyclohexene derivatives (Albov et al., 2004b), we synthesized the title compound (2).

(2)
(1)

An analysis of bond lengths in the oxazolopyridinium ring system of (2) (Fig. 1) shows its aromaticity. The ninemembered bicyclic system is planar to within 0.0216 (9) \AA : atoms C10, C11, C15 and C16 lie in the same plane, while atoms C12, C13 and C14 are displaced from that plane by 1.421 (3), 1.507 (3) and 1.322 (2) Å, respectively. The cycloheptene ring has a chair conformation. The benzene ring is planar to within 0.0033 (9) \AA, with atoms C11 and C3 in the same plane. The dihedral angle between the oxazolopyridinium and benzene fragments is $3.77(7)^{\circ}$, indicating that there is considerable conjugation between these aromatic fragments.

All these results will be compared with the crystal structures of five- and eight-membered cycloalkane derivatives which are in progress, as well as with published (Albov et al., 2004b) sixmembered cycloalkane derivatives.

Experimental

For the preparation of (2), 1.80 g of (1) was dissolved in 15 ml of sulfuric acid and kept overnight. The solution was then poured into 100 ml of a 3% aqueous solution of perchloric acid. A white preci-

Received 15 April 2004 Accepted 21 May 2004 Online 29 May 2004
pitate formed and the mixture was kept overnight again for complete precipitation. The product was filtered off and washed with water and acetone (yield $2.15 \mathrm{~g}, 96 \%$). It was recrystallized from acetonitrile (m.p. 573 K with explosion). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$, p.p.m.): $1.70\left(m, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 1.83\left(m, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 1.99\left(m, 2 \mathrm{H}, 14-\mathrm{CH}_{2}\right)$, $2.67\left(s, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 3.05\left(t, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 3.44\left(t, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 7.65$, $8.00(d d, 4 \mathrm{H}, \mathrm{Ar}), 8.08$ ($s, 1 \mathrm{H}, 6-\mathrm{CH}$), 9.58 ($s, 1 \mathrm{H}, 2-\mathrm{CH}$).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClNO}^{+} \cdot \mathrm{ClO}_{4}^{-} \\
& M_{r}=412.25 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.894(3) \AA \AA \\
& b=18.492(3) \AA \\
& c=13.271(2) \AA \\
& \beta=101.46(2))^{\circ} \\
& V=1898.6(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.442 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation
Cell parameters from 25 reflections
$\theta=33-35^{\circ}$
$\mu=3.35 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Non-profiled ω scans
Absorption correction: none 4010 measured reflections 3901 independent reflections 3310 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.004$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.107$
$S=0.98$
3901 reflections
246 parameters

$$
\begin{aligned}
& \theta_{\max }=75.0^{\circ} \\
& h=-9 \rightarrow 9
\end{aligned}
$$

$$
k=0 \rightarrow 23
$$

$$
l=0 \rightarrow 16
$$

1 standard reflection every 200 reflections intensity decay: 4\%

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0892 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Cl1-C19	$1.729(1)$	C8-C9	$1.367(2)$
O4-C5	$1.337(1)$	C8-C11	$1.516(2)$
O4-C3	$1.394(1)$	C9-C15	$1.476(2)$
N1-C5	$1.342(1)$	C11-C12	$1.528(3)$
N1-C9	$1.384(1)$	C12-C13	$1.510(3)$
N1-C2	$1.402(1)$	C13-C14	$1.501(3)$
C2-C3	$1.345(2)$	C14-C15	$1.529(2)$
C3-C16	$1.455(2)$	Cl2-O21	$1.364(2)$
C5-C6	$1.382(2)$	Cl2-O22	$1.372(2)$
C6-C7	$1.369(2)$	Cl2-O23	$1.400(2)$
C7-C8	$1.427(2)$	Cl2-O24	$1.417(2)$
C7-C10	$1.517(2)$		
C5-O4-C3	$106.7(1)$	C7-C6-C5	
C5-N1-C9	$122.0(1)$	C6-C7-C8	$117.4(1)$
C5-N1-C2	$107.4(1)$	C6-C7-C10	$120.0(1)$
C9-N1-C2	$130.6(1)$	C8-C7-C10	$119.2(1)$
C3-C2-N1	$106.8(1)$	C9-C8-C7	$120.9(1)$
C2-C3-O4	$108.8(1)$	C9-C8-C11	$121.1(1)$
C2-C3-C16	$133.7(1)$	C7-C8-C11	$117.6(1)$
O4-C3-C16	$117.5(1)$	C8-C9-N1	$121.3(1)$
O4-C5-N1	$110.3(1)$	C8-C9-C15	$117.1(1)$
O4-C5-C6	$127.3(1)$	N1-C9-C15	$124.5(1)$
N1-C5-C6	$122.4(1)$	C8-C11-C12	$118.4(1)$

Figure 1
ORTEP-3 (Farrugia, 1997) plot of the molecule and atom-numbering scheme of compound (2). Displacement ellipsoids are drawn at the 50% probability level.

H atoms were included in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$) and refined as riding, with $U_{\text {iso }}=1.5$ (methyl H) or $1.2 U_{\text {eq }}$ (carrier atom).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

References

Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004a). Acta Cryst. E60, o894-o895.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004b). Crystallogr. Rep. 49. In the press.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

